MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution.
نویسندگان
چکیده
The floral quartet model of floral organ specification poses that different tetramers of MIKC-type MADS-domain transcription factors control gene expression and hence the identity of floral organs during development. Here, we provide a brief history of the floral quartet model and review several lines of recent evidence that support the model. We also describe how the model has been used in contemporary developmental and evolutionary biology to shed light on enigmatic topics such as the origin of land and flowering plants. Finally, we suggest a novel hypothesis describing how floral quartet-like complexes may interact with chromatin during target gene activation and repression.
منابع مشابه
Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)
Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...
متن کاملCharacterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, ...
متن کاملMADS-box genes are involved in floral development and evolution.
MADS-box genes encode transcription factors in all eukaryotic organisms thus far studied. Plant MADS-box proteins contain a DNA-binding (M), an intervening (I), a Keratin-like (K) and a C-terminal C-domain, thus plant MADS-box proteins are of the MIKC type. In higher plants most of the well-characterized genes are involved in floral development. They control the transition from vegetative to ge...
متن کاملMolecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
Floral homeotic genes that control the specification of meristem and organ identity in developing flowers have been isolated from both Arabidopsis thaliana and Antirrhinum majus. Most of these genes belong to a large family of regulatory genes and possess a characteristic DNA binding domain known as the MADS-box. Members of this gene family display primarily floral-specific expression and are h...
متن کاملMADS domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis.
MADS domain transcription factors are key regulators of eukaryotic development. In plants, the homeotic MIKC MADS factors that regulate floral organ identity have been studied in great detail. Based on genetic and protein-protein interaction studies, a floral quartet model was proposed that describes how these MADS domain proteins assemble into higher order complexes to regulate their target ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 143 18 شماره
صفحات -
تاریخ انتشار 2016